A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints

نویسندگان

  • Dominik Meidner
  • Boris Vexler
چکیده

This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the control variable. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For the treatment of the control discretization we discuss different approaches extending techniques known from the elliptic case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part I: Problems Without Control Constraints

In this paper we develop a priori error analysis for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error e...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

In this article we summarize recent results on a priori error estimates for space-time finite element discretizations of linear-quadratic parabolic optimal control problems. We consider the following three cases: problems without inequality constraints, problems with pointwise control constraints, and problems with state constraints pointwise in time. For all cases, error estimates with respect...

متن کامل

A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems

In this paper, a priori error estimates for space-time finite element discretizations of optimal control problems governed by semilinear parabolic PDEs and subject to pointwise control constraints are derived. We extend the approach from [23, 24], where linear-quadratic problems have been considered, discretizing the state equation by usual conforming finite elements in space and a discontinuou...

متن کامل

A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

In this article we discuss a priori error estimates for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations and subject to inequality control constraints. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2008